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Mechanical unfolding of directed polymers in a poor solvent: Critical exponents
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We study the thermodynamics of an exactly solvable model of a self-interacting, partially directed self-
avoiding walk in two dimensions when a force is applied on one end of the chain. The critical force for the
unfolding is determined exactly, as a function of the temperature, below theQ transition. The transition is of
second order and is characterized by new critical exponents that are determined by a careful numerical
analysis. The usual polymer critical indexn on the critical line, and another one which we callz, takes a
nontrivial value that is numerically close to 2/3.
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I. INTRODUCTION

The nature of the collapsed phase that a polymer attain
poor solvent conditions is still under debate~see, e.g., Refs
@1,2#, and references therein!. Recent experiments on pullin
of polymers and biopolymers~see, e.g., Refs.@3–5#! have
enhanced theoretical interest on the unfolding transitio
collapsed polymer undergoes when subjected to an exte
force f applied at its extrema. Until very recently, most of t
existing studies on this subject dealt with a refined version
the mean field studies originally proposed in Ref.@6#. A com-
mon characteristic of such studies is that, for a self-attrac
polymer, they predict a first-order phase transition in a
dimension at a critical forcef c(T). At temperatures below
theQ transition, where the self-attraction prevails, and for
applied force less thanf c , the polymer is in a compac
phase. For forces greater thanf c , the self-attraction is unable
to maintain the polymer in its compact conformation and
polymer chain is stretched along the force direction. Ho
ever, in d52 extensive Monte Carlo simulations@7#, per-
formed on a self-avoiding walk~SAW! model, suggested tha
the transition is of second order. An exactly solvable mod
on a lattice of fractal dimension 2, has been analyzed in R
@8# and a second-order transition was found at a critical fo
f c(T). In Ref. @9#, a rationale was given for the change
order of the transition as the spatial dimensiond goes past 2
by means of a renormalization group based argument. Wi
this framework, it was found that, near criticality, the proje
tion of the end-to-end distance along the force direction
monomer goes likef 2 f c , near the phase transition, wheref
is the force andf c is the critical force. Numerical uncertain
ties are too large to critically test this prediction in the SA
model of Refs.@7,9#. Another feature of interest of the SAW
model is that the transition linef c(T) shows a reentrance a
low temperature, i.e.,f c(T) increases at lowT and after
reaching a maximum it decreases becoming zero atTu , the
Q transition. The reentrant behavior is due to the fact tha
the low-T limit, since the entropy does not play any role, t
energy dominates the free energy and the open chain is
most favorable configuration. Let us notice that this behav
is similar to the one found in theoretical models of pulling
1063-651X/2003/67~4!/041802~7!/$20.00 67 0418
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double stranded DNA@10–12#. Here we will consider a sim-
plified polymer model where the chains are represented
partially directed walks, i.e., steps with negative projecti
along thex axis, (1,0), are forbidden. This model proved
be helpful in the past in order to find the phase diagram
the ~temperature, fugacity! plane for a simplifiedu transition
@13–18#. We take advantage of previous contributions a
generalize the model to the presence of a pulling force al
the direction (1,0)~see also Ref.@19#!. Surprisingly, in this
version the critical force as a function of the temperatureT
can be found analytically. With transfer matrix techniques
find that the end-to-end distance per monomer goes likef
2 f c)

1/z21, with z,1. With a sophisticated enumeratio
technique@16# we show that the correlation critical expone
n takes on a nontrivial value on the critical line, numerica
very close tonu52/3, the exponent at theQ transition. It is
not clear whether this is an accidental degeneracy or if it
apply also in the undirected case too. For example, in
three dimensional Sierpinski gasket, an exact renormal
tion leads to a nontrivialf dependence ofn @8#!.

Our work is structured as follows. In Sec. II, we introdu
the model and the basic quantities of interest. In Sec. III,
outline how the transfer matrix can be applied to our mod
find explicitly the phase diagram~critical line!, and give a
rough estimate of the exponentz. A scaling argument is
proposed to suggest that at criticalityn5z. In Sec. IV, we
review the enumeration technique proposed in Ref.@16#,
which we use in Sec. V in order to estimate the value ofn on
the critical line. In Sec. VI, we critically analyze our scalin
ansatz and the hypothesis thatn5z. Finally, in Sec. VII, we
draw our conclusions. In the Appendix, we derive theexact
critical exponents in the continuum approximation through
technique developed in Ref.@17# and generalized forf Þ0.

II. THE MODEL

The model is a directed SAW~DSAW! on a two-
dimensional square lattice~see Fig. 1!, with ~nonconsecu-
tive! nearest-neighbor interactions. A forcef, directed along
the same axis of the walk, is pulling on one end of t
DSAW, the other one being fixed at the origin. Given a p
©2003 The American Physical Society02-1
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ticular configurationC, the energy is

EC52em2 f Rx , ~1!

wherem is the number of interacting pairs ande the energy
per pairs,f the modulus of the applied force, andRx the
longitudinal extension of the walk. Then, the canonical p
tition function can be written as

QL5QL~be,b f !5(C
e2bEC, ~2!

where L is the number of the steps of the walk andb21

5T is the temperature in units of the Boltzmann consta
From now on, we will sete51 without loss of generality.
From the canonical partition function, we construct t
grancanonical partition function~generating function!

G~T, f ,z!5 (
L51

`

Q LzL, ~3!

z being the step fugacity. The~real! singularity closest to the
origin, zc(T, f ), of the generating function, Eq.~3!, is related
to the free energy per monomer as follows:

ln zc~T, f !52 lim
L→`

ln QL

L
. ~4!

From the singularities of the generating function wheref
50, a complete phase diagram can be extracted~see the
following Section and also Refs.@14,15,17#!. In particular, a
singularity is found in the free energy at a value ofT5Tu ,
called theQ temperature.

III. TRANSFER MATRIX CALCULATIONS
AND PHASE DIAGRAM

Starting from the definition of the generating function, E
~3!, where f 50, we observe that it can be conveniently r
written @13,14# as

FIG. 1. An example of a DSAW configuration. The quantitiesyi

and the force direction are also displayed. Thick dashed lines i
cate contacts.
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G~T, f ,z!5(
Lx

GLx
~T,z!exp~b f Lx!, ~5!

where GLx
5(LQL,Lx

zL, QL,Lx
being the partition function

restricted to walks of total lengthL, of which Lx steps are
along thex direction.

This is useful because nowGLx
can be written in terms of

a transfer matrixT of dimensionalityLy
2 , whereLy is the

size of our system along they direction@13,14#. Such a trans-
fer matrix T is defined via its actions on the vecto
$v i% i 51, . . . ,L

y
2, with v i5(yi ,yi 11), yi being the height of the

site in thei th row, which precedes the right-bound horizon
link in that column~see Fig. 1!, as follows:

T~v i ,v i 11!5exp@b~min$ur i u,ur i 11u%!u~2r i r i 11!#

3exp@~ ur i u11!ln z#, ~6!

wherer i5yi 112yi andu(x) is the Heaviside step function
It can be shown thatG(T, f 50,z) develops a singularity
when l, the largest eigenvalue ofT, goes through 1@20#.
This means that for largeLx ,

GLx
}@l~T,z!#Lx. ~7!

Consequently, the force-dependent singularityzc(T, f ) oc-
curs when

l~T,z!exp~b f !51. ~8!

Equation~8! has a rather deep consequence. In order for
critical fugacity and hence the free energy to display a s
gularity at a nonzero value of the force, i.e., in order for t
force-induced unfolding transition to exist as a thermod
namic transition and not only as a crossover, it is necess
that l(T,z), the largest eigenvalue of the transfer mat
where there is no force, has itself a singularity asz ap-
proacheszc(T, f 50)[z0. Otherwise, from Eq.~8! it is clear
that there can be no such singularity. If there is a transiti
then we get the following equation for the critical force:

f c~T!52T lim
z→z0

2
ln l~T,z!. ~9!

In Eq. ~9!, the value ofl to be put in the right hand side o
the equation is the one pertaining to the infinite syste
l(T,z) for z slightly less thanz0 is plotted in Fig. 3 with a
lateral sizeLy up to 40. It is rather clear that a singularity ha
to be expected atz5z0 in the infinite size limit. It was in-
deed shown@14,15# that for T,Tu (Tu50.8205 . . . in this
model!, there is a singularity of the grand partition functio
for z5z05exp(2b) and for this value of the fugacity, the
largest eigenvalue is strictly smaller than 1, being@14#

l„b,z5z05exp~2b!…[l~b!5
z0~11Az0!

12Az0

. ~10!

The Q transition temperature is obtained whenl„b,z5z0
5exp(2b)…51. Consequently, the critical linef c(T) is ob-
tained by puttingl(b)5exp@2bfc(T)#, i.e.,

i-
2-2
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f c~T!5T lnF 12exp~2b/2!

exp~2b!@11exp~2b/2!#G , ~11!

and is plotted in Fig. 2, where also the results obtained w
the transfer matrix with system size up toLy540 are dis-
played. In view of Eqs.~8! and ~9!, we can define a new
critical exponent z that characterizes the directed se
avoiding walk. From Eq.~9!, if the largest eigenvalue ap
proaches its limit value according to the law

l~z0
2!2l~z!;~z02z!z, ~12!

then one straightforwardly obtains@via Eqs.~8! and ~9!#

lim
L→`

^Rx~L !&
L

;@ f 2 f c~T!#1/z21, ~13!

where ^Rx(L)& is the average projection of the end-to-e
distance of the DSAW along the axis (1,0). From Fig. 3
estimated 1/2,z,1, with z.0.7 though a precise determ
nation is difficult. If z,1, in particular, the transition is o
second order. It is widely accepted that ford.2, the transi-
tion is of first order and soz51. In Ref.@9#, a renormaliza-
tion group based argument ind52, on the other hand, gav
the ~undirected! SAW z51/2. This argument would also ap
ply to the present case. Given that the transition is of sec
order in our model, it is also sensible to look for the value
the critical exponentn ~defined asRg;Ln for large number
of stepsL, where Rg is the gyration radius of theL-site
polymer. In Sec. VI, using a scaling argument, we shall de
onstrate thatn5z.

In the following section, we shall study the complete c
nonical partition function, Eq.~2!, using a powerful method
of exact enumeration introduced in Ref.@16#, which allows
us to reach large values ofL.

FIG. 2. Exact critical line as in Eq.~11! together with points
corresponding to estimates with the transfer matrix calculation, w
strip sizeLy520 and 40.
04180
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IV. THE METHOD OF ENUMERATION

As already mentioned, the configurations of the model
directed walks on a two-dimensional square lattice w
nearest-neighbor interactions. For convenience, we dem
that these walks end with a horizontal segment. Since
walks are directed in thex direction we can describe thes
configurations through a distancer i between two horizonta
steps, measured in the positivey direction. Thus, we associ
ate to each configuration anN tuple (r 1 ,r 2 , . . . ,r N), corre-
sponding to a configuration of total lengthL5( i 51

N ur i u1N.
The energy due to the nearest-neighbor interactions

each of these configurations is@see Eq.~6!#

U~r 1 ,r 2 , . . . ,r N!52 (
i 51

N21

min~ ur i u,ur i 11u!u~2r i r i 11!.

~14!

In the following, we assign weightsx for steps in the hori-
zontal direction andy for steps in the vertical direction
Then, the canonical partition function is

QL~x,y,v!5 (
N51

L

~xeb f !N

3 (
ur 1u1ur 2u1•••1ur Nu5L2N

yL2NvU(r 1 ,r 2 , . . . ,r N),

~15!

wherev5exp(b).
Now, it is convenient to consider the partition function

Z L
(r )5Z L

(r )(x,y,v) for walks of total lengthL11 which
start with a vertical segment of heightr. Then, we have

h FIG. 3. Plot of the largest eigenvalue (T50.4,Tu) vs z. It is
apparent that the largest eigenvalue approaches a limit valuez
approachesz05exp(2b) (,1) from below. Thus, a transition ex
ists in the thermodynamic sense.
2-3
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QL11~x,y,v!5 (
r 52L

L

Z L
(r ) , ~16!

@note thatZ L
(0)5xQL(x,y,v)] which satisfies the following

recursion relation:

Z L
(r )5xyur uH d ur u,L1eb f (

s52L1ur u11

L2ur u21

vU(r ,s)ZL2ur u21
(s) J ,

~17!

obtained concatenating these walks. In Eq.~17!, r
52L, . . . ,L, with L50,1,2, . . . . Using the symmetry
Z L

(r )5Z L
(2r ) , Eq. ~17! can be written only for non-negativ

r as

Z L
(r )5xyr H d r ,L1eb f (

s50

L2r 21

ZL2r 21
(s)

1eb f (
s51

L2r 21

vmin(r ,s)ZL2r 21
(s) J . ~18!

Settingx5y51 in Eq. ~18!, we obtain on iteration schem
and the free energyFL(v)52(1/bL)ln Z L

(0) . The average
longitudinal length of the walk̂Rx(L)& is simply

^Rx~L !&5
]

]~b f !
ln Z L

(0) . ~19!

Then, we shall proceed as follows.
~1! We calculate the free energy using the iterati

scheme proposed in Eq.~18!.
~2! Using Eq. ~19!, we determine how the quantit

^Rx(L)&/L varies against the applied forcef.

V. RESULTS

The plot of ^Rx(L)&/L vs f for various values ofL is
represented on Fig. 4 atT50.4, which is below theQ tran-

FIG. 4. Plot of ^Rx(L)&/L vs f for a variable lengthL of the
walk.
04180
sition occurring atTu.0.8205 . . . . From Eq.~11!, we have
f c(T50.4).0.764 . . . .

From a careful examination of Fig. 4, we deduce that
quantity ^Rx(L)&/L decreases asLn21, where thecritical
exponentn might depend on the temperatureT. In particular,
the data are consistent withn,1 if f < f c(T) andn51 if f
. f c(T). In order to find more precise values for the critic
exponent, we shall proceed along the same lines of Ref.@16#.

An estimation of the critical exponent through the use
the Pade´ approximants@21# is given in Table I.

Our estimate of the critical exponent, at the critical forc
is close to2

3 , then value at theQ point at f 50 @15,17#. As
shown in the Appendix, this is theexactvalue.

To get a better insight, let us define anL-dependent criti-
cal exponentn(L) through the formula

n~L !5
ln^Rx~L11!&2 ln^Rx~L !&

ln~L11!2 ln L
. ~20!

Plotting n(L) vs an estimated correction-to-scaling term,
careful extrapolation toL→` can be performed, determin
ing the critical exponentn for all values of the force. Let us
consider three different regimes:

~a! f , f c . As an example, let us considerf 50.4. We
have found that successive estimates for the exponentn21
with increasingL follow a straight line when plotted agains
a correction-to-scaling term of 1/L0.5 ~see also the case o
Ref. @16# at f 50). The plot is shown in Fig. 5. The extrapo
lated value forL→` givesn21.20.4998, thenn. 1

2 , the
exponent typical of a compact phase.

TABLE I. Estimates for the critical exponents from a Pade´ ap-
proximant analysis. Note that in thef . f c case, the error is com
pletely negligible.

f n L

, f c 0.501(7) <1900
5 f c 0.68(8) <1900
. f c 1.00000 <1300

FIG. 5. Plot ofn21 vs 1/L0.5 for f , f c andL up to 3000.
2-4
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MECHANICAL UNFOLDING OF DIRECTED POLYMERS . . . PHYSICAL REVIEW E 67, 041802 ~2003!
~b! f . f c . As before, we have plotted the exponentn
21 against a well-defined correction-to-scaling term. No
this term is of the order of 1/L. Figure 6 shows thef 51.0
case as a typical example. Now, the extrapolated value g
n21.3.031026, thenn51 within the numerical precision

~c! f 5 f c . Now, the correction-to-scaling term is of th
order of 1/L0.28 ~see Fig. 7! andn21.20.3336, which im-
plies n. 2

3 .
Thus, we find that the value ofn for f 5 f c(T) is equal~in

the limit of numerical precision! to the value2
3 , which cor-

responds to that forf 50 at T5Tu @15,17#. This is a non-
trivial result. In particular, we have to expect that along
the critical linesf 5 f c(T), n takes the value23 ~see also the
Appendix!. Moreover, as pointed out in Ref.@17#, the
correction-to-scaling term, wheref 50 andT5Tu , is of the
order of 1/L1/3. In our case, we found that this correctio
increases to 1/L0.28 for T50.4. Within the numerical errors
this implies that the correction-to-scaling term depends
force as well as on temperature, and that the size of
system has to increase in order to find the right critical
ponent.

FIG. 6. Plot ofn21 vs 1/L for f . f c andL up to 3000.

FIG. 7. Plot ofn21 vs 1/L0.28 for f 5 f c andL up to 3000.
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Finally, in Table II we have summarized the above resu
In the following section, we shall introduce a scalin

theory that rationalizes what we have found on the criti
behavior of the average horizontal end-to-end displacem
^Rx(L)&.

VI. SCALING THEORY

Our previous results suggest the following scaling ans
~see also Ref.@7#!:

^Rx~L !&5LnF~D f Lc!, ~21!

whereD f [ f 2 f c(T). The scaling functionF(x) must have
the following behavior:

F~x!;5
x(12n)/c if x→1`

F0 if x→0

uxu(1/22n)/c if x→2`,

~22!

with F0 a nonzero constant value. Then, the quan
^Rx(L)& obeys the equations

^Rx~L !&;5
LD f (12n)/c if D f .0,

12n

c
.0

Ln if D f 50

L1/2uD f u(1/22n)/c if D f ,0,
1/22n

c
,0,

~23!

in agreement with the results found in the preceding sect
Now, let us observe that the free-energy contribution

the singular part is

DF5^Rx~L !& f 2^Rx~L !& f c5^Rx~L !&D f 5D f LnF~D f Lc!,
~24!

where we have used Eq.~21!, f is the applied force, and
F̃(x)5xF(x). SinceDF is a contribution to thetotal free-
energy~not a free energy density!, we expect that it depend
only on the ‘‘dimensionless’’ combination of the scalin
fieldsD f andL with appropriate exponents. This implies th
n5c.

Comparing Eqs.~13! and ~23!, we deduce thatz5n
52/3. Then, Eq.~21! becomeŝ Rx(L)&5L2/3F(D f L2/3).

TABLE II. Estimates for the critical exponents from an extrap
lation toL→`, obtained plotting theL-dependent critical exponen
n(L), Eq. ~20!, vs an estimated correction-to-scaling term.

f n

, f c 1/2
5 f c 2/3
. f c 1
2-5
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To test this prediction, we have plotted in Fig. 8 the fun
tion L22/3^Rx(L)& vs f 2 f c , where f c is again determined
from the exact formula, Eq.~11!. It is evident that, apart from
the obvious finite size scaling corrections, our ansatz is
tified. Then, we have derived the scaling functionF(x). The
final result is shown in Fig. 9.

VII. CONCLUSIONS

In this work we have analyzed a model of self-avoidin
partially directed chains on a square lattice, with a fo
pulling along one of the two lattice directions. The model
simple enough to yield the exact form of the temperat
dependent critical forcef c(T) @see Eq.~11!#. However, the
critical indices of the unfolding transition, which is of secon
order, are not trivial. The transition is characterized by t
exponents: the usual correlation length critical exponenn
and one that we calledz. In particular, the exponentn at f

FIG. 8. Plot of ^Rx(L)& scaled byL2/3 vs f 2 f c . Finite size
scaling corrections to the critical force are evident.

FIG. 9. Successive estimates for the scaling functionF(x) are
shown for increasing lengths of the walk.
04180
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5fc @see Eq.~23!# is different both from 1/2, the collapse
polymer value, and from 1, the extended polymer value@see
again Eq.~23!#. The z exponent characterizes the singul
behavior of the chain elongation per monomer along
force direction as the critical force is approached from abo
@see Eq.~13!#. Through a powerful enumeration techniqu
taken from the literature@16#, coupled with a finite size scal
ing to extrapolate our results to infinitely long chains, w
find thatn is very close to 2/3. A scaling analysis also su
gests thatn5z at least within our numerical precision. Fu
ther investigations are required to extend our results to
undirected SAW case.

APPENDIX: EXACT EVALUATION
OF THE CRITICAL EXPONENTS

In this appendix we will show that, generalizing the co
tinuum approximation of Ref.@17# for f Þ0, the exact criti-
cal line f c(T) can be calculated. More importantly, we ha
obtained an exact derivation of the critical exponents af
. f c and f 5 f c , and we will show that they do not depend o
T for T<Tc .

First of all, we briefly outline the main results of Re
@17#. The authors proposed a continuous model of DSA
where ther i ’s in the nearest-neighbor energy term, Eq.~14!,
are not restricted to integer values. As shown, this mode
the continuous limit of the discrete DSAW and has the sa
critical exponents. After some algebra, they derived the
lowing exactform for thex-generalized partition function

G~x,z;v!5211s21
Jl~sl!

Jl8~sl!
, ~A1!

where x is the fugacity along the horizontal direction,t
52 ln z, s5(4x/b)1/2, and l5b/(t2b). Jl and Jl8 are,
respectively, the Bessel function of orderl and its deriva-
tive. The desiredgeneralized partition function is given b

FIG. 10. Exact critical line in the continuum approximation.
2-6
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Eq. ~A1!, with x51. The critical fugacity is given by the
solution of the equationJl8(sl)50 and the critical point is
given bys51 or bc54.

From Eq.~A1!, it is possible to define an average ho
zontal length as

^N&5
] ln G~x,z;v!

] ln x U
x51

. ~A2!

When f 50, the exact critical exponents aren51 for T
.Tu (s.1) andn52/3 for T5Tu (s51).

To generalize forf Þ0, we have replacedx with xeb f and,
then, putx51. Formally, Eqs.~A1! and ~A2! still remain
valid, with s5(4eb f /b)1/2. The critical line, determined by
the equations51, gives f c5 f c(T)5(1/b)ln(b/4) and is
.

e

ni

n

04180
plotted in Fig. 10. It can be easily understood, once it
realized that Eq.~11! for eÞ1 reads

f c~T!5T lnF 12exp~2be/2!

exp~2be!@11exp~2be/2!#G . ~A3!

It is easy to verify that the continuum limit is formall
achieved whene→0.

The exact critical exponents aren51 for f . f c (s.1)
and n52/3 for f 5 f c , which agree with the results of th
discrete model in Sec. V.

Notice that the shape of the transition line at lowT is an
unphysical feature of the continuum approximation, as d
cussed in Refs.@10,11#.
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